
CaKuTa: Combining Information Value and Temporal
Context in a Graph Based Recommender

Mehmet Gençer
Istanbul Bilgi University, Department of Computer Science
Kurtuluş Deresi Caddesi No: 47 Dolapdere, 34440 Beyoğlu

Istanbul, Turkey
mgencer@cs.bilgi.edu.tr

ABSTRACT
We present a recommender system which uses a graph based
representation to relate items in a system with heteroge-
neous attributes. In assessing strength of relations between
items we combine rarity of common properties with collab-
orative data on item popularity, with optional inclusion of
a random term to introduce diversity in recommendations.
For incorporating user preferences into recommendation, our
system allows tuning of persistence level while maintaining
temporal user context, hence providing a way to prefer or
combine ephemeral or persistent preferences of the user.

Keywords
Contextual Recommendation, Information Value

1. INTRODUCTION
In this paper we describe an experimental recommender

system, named CaKuTa, which is targeted for systems where
descriptive data about item properties is available. Its rec-
ommendation algorithm is based on a graph based similarity
representation.

CaKuTa is a hybrid system which uses both collaborative
and content based information, but has several distinguish-
ing design goals. First, the recommender system is intended
to be sensitive to ephemeral context of users’ navigation in
a system, in addition to using their long term and persistent
interests. Most collaborative recommender systems based
on user profile similarity are severely limited when user is
looking for something which is not hinted by their past activ-
ity. This is particularly relevant for new users which perhaps
should matter most to e-commerce sites. For new users past
activity is limited and incomplete, hence can be mislead-
ing. Methods weighing towards collaborative recommenda-
tion algorithms have the risk of over classifying users, which
may result in poor recommendation quality for new users or
in cases where users are exploring a new interest previously
unknown to the system. Instead, our design targets to allow
maintaining both ephemeral and persistent user interests.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys 2010 Barcelona, Spain
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The second design goal of CaKuTa is to minimize both
the requirements for its integration into and information re-
quired from the underlying system for it to do its work. For
this reason, we let items in a system be of heterogeneous
type and hence have incompatible attribute sets. In assess-
ing similarity of items and maintaining user interests, we
rely on commonality of item properties, and also use their
rarity as a proxy of information value of properties in terms
of such assessment.

The third design goal is to allow the recommender system
to be tuned for different deployment contexts since features
of the information in the system, such as scarcity and skew
of ratings, amount of attributes, etc., may differ greatly [5].
For this reason, our recommendation algorithm is formu-
lated in a parametric manner, an we discuss how different
combinations are possible to let the recommendation system
lean towards collaborative or per-user data, or change per-
sistence level in user context maintenance, in order to suit
different deployment contexts or recommendation strategies.

Finally, the recommender system is expected to be ex-
ploratory, in addition to being consistent, and for this rea-
son introduce some random diversity in its search. It should
lead its user to discovery of new items, while at the same
time constraining its search with respect to user preferences.

In the following sections we first describe the model for
representing item similarities and user preferences, then de-
scribe our recommendation algorithm which aims to fulfill
the goals described above.

2. DATA MODEL AND ALGORITHM
In order to meet its goals, our design relies on a graph

based representation of similarities between items and user
preferences, which was partially introduced in a previous
work [7]. Given the set of items, I, and users, U, CaKuTa
recommendation algorithm makes an assessment of the util-
ity of an item, j ∈ U, for a user u ∈ U, given that the user is
currently viewing some item i ∈ U. For modeling the data
required by the algorithm, we use the definition of objects
which are associated with one or more items as item proper-
ties. Using this data, similarity between items are assessed
using commonality of their associations with objects. User
preferences are also modeled as level of interest in various
objects, deduced from user’s past interest in items which
are in turn associated with objects. Finally, item similarity
and user preferences are combined in the recommendation
algorithm.

2.1 Item Properties and Item-to-Item Relations

Figure 1: An example of item properties

Properties of items are modeled as a bipartite binary graph
which represents the two mode network of relations between
items in I (e.g. films) and objects (e.g. people) in a set de-
noted with O. With these definitions, properties of an item,
i, will be expressed as a set of associations with a subset of
objects, denoted as Ai:

Ai = {(o, ri→o) : o ∈ O, ri→ois a relation label}

The graph is a binary (i.e. unweighted) one since the as-
sociations are considered to be equal value. Attachment of
different importance to properties would be problematic to
do so on an objective basis.

As an example consider the movie Death Proof. The prop-
erties of this item would be the set:

(QuentinTarantino,Director)
(Thriller,Genre)
(AprilMarch, SoundTrackArtist)
. . .

While the relation labels are useful for search or presentation
purposes, they are of little importance for our recommenda-
tion algorithm. For this reason, from this point on we will
let Ai denote simply the set of objects with which the item
i is associated with:

Ai = {o : o ∈ O, i is associated with o}

A visualization of such relations in a system is shown in
Figure 1. The figure also indicates some fictional ratings
of items, and frequencies of objects. The frequency, fo, of
an object, o, is simply the number of items associated with
the object; or more formally, in-degree of o in the bipartite
graph (or equivalently, the number of sets Ai which contain
o). Concerning the item ratings, the fact that we use a sim-
ple scalar rating needs explanation. Recommender systems
often rely on elaborate user ratings. However such ratings
may be scarce [5], and when available may unevenly repre-
sent user feedback if a relatively small proportion of users
provide most of the ratings. For this reason, we envision
using the count of visits of an item as its single dimensional
and scalar implicit rating value, denoted as ri for item i;
although replacing or combining such rating with explicit
ratings by users is possible. However, this choice of rating
assessment simplifies integration of a recommender system
with the host system it is deployed on.

Figure 2: Example portion of item-to-item graph

Please note that there is a path in the example graph in
Figure 1 connecting an album (Paris in April) to a movie via
the artist who recorded both the album and also a sound-
track which is used in the movie. For this reason, it is pos-
sible to establish a relationship across items from different
cultural domains (music and film), and in turn to make cross
recommendations. This prospect was the reason that we
have chosen the name CaKuTa (an abbreviation of cross
cultural recommendation, in Turkish).

The bipartite graph representing relationships between
items and objects allow us to make a transformation to gen-
erate a graph of similarity relations between items, as shown
in Figure 2. While the item-to-properties graph was a bi-
nary one, item-to-item graph is weighted. In item-to-item
graph, an item has directed edges to items with which it has
at least one common object association.

CaKuTa design uses the insight that properties that are
less frequent are more informative of a user’s intentions. For
this reason the weight of a relation in the item-to-item graph,
from an item i to another item j should be reversely propor-
tional to frequencies of their common properties, Ai ∩ Aj .
On the other hand, following the common sense thinking in
collaborative recommendation, an edge in the item-to-item
graph should have a weight which is proportional to the rat-
ing of its destination vertex. For this reason we calculate
the weight of directed relation, w(i, j), as:

w(i, j) = c · rj
x

0@ X
o∈(Ai∩Aj)

1

fo
y

1A + d · ε (1)

Where x, y, c, and d are some non-negative constants, and
ε is a uniformly distributed random variable, 0 ≤ ε ≤ 1.
These constants control the type of relational attachment
provided by the weight calculation. For example, the choice
of d = 0 and positive c, x and y, will result in a relational
assessment which adheres to the description above since the
result is proportional to rating of the destination item but
reversely proportional to frequency of objects, i.e. respects
information value. Considering the example shown in Figure
1, it is possible, depending on the choice of x and y, that
the music album Paris in April is assigned as the largest
weight edge from the source item, the movie Death Proof,
in the item-to-item graph shown in Figure 2, although other
items have more than one property in common with the
source. This is simply because the artist April March is a
rare property compared to others (its frequency value is 32,
compared to 145 and 820 of other properties in the example),
hence having a greater multiplier 1

f
y
o

, although the music

album has a lower rating.
The readers will notice that the first term in Equation

1 is not normalized, hence making the choice for constants
difficult. For this reason it may be useful to break down
the constant c so that to explicitly include some sort of a

Figure 3: User to property relations

normalization term1.
Different choice of the constants will result in various types

of establishing item-to-item relations. For example using
x < y in the above example will mean that similarity of prop-
erties are more valued than item ratings. Using a positive d
value in Equation 1, on the other hand, will introduce a cer-
tain level of randomness in item-to-item relation strength.
The intention here is using a relatively small random com-
ponent which improves exploratory capabilities while still
respecting item similarity, hence improving diversity of rec-
ommendations.

Normalization with respect to frequency of keywords is a
common technique in recommender systems [2]. However,
employment of such normalization in a graph based method
as ours results in a natural combination of item attributes
and their rarity with ratings to determine local relevance of
items.

2.2 User Preferences
Here we describe how a user’s level of interest in objects

is induced from user’s purposeful browsing of items (but
can be combined or replaced with explicit ratings or profile
information). An example is visualized in Figure 3. For a
user, u, the level of interest of user in an object, o, will be
denoted as p(u, o, t), where t denotes the time in terms of
sequence index of user’s visits to items. In updating user
interests, given that the item browsed by the user at time
t is it, we compute interest levels as an exponential moving
average:

p(u, o, t) =

(
(1− α) · p(u, o, t− 1) + α f

fo
if o ∈ Ait ,

(1− α) · p(u, o, t− 1) otherwise.

(2)
where α is the smoothing factor, 0 ≤ α ≤ 1, and f is the
mean of object frequencies:

f =

P
o∈O fo

|O|

This normalization with f in Equation 2 together with hav-
ing fo as denominator serves to incorporate the information
value of properties where rare properties are assigned higher
interest levels, similar to the case for Equation 1. Please
note that the definition of time variable, t, in the above de-
scription simply refers to sequence number of actions of the

1For example as c = c1 · |Ai∩Aj |·f
y

rx , where |Ai ∩Aj | is the

mean size of the sets of common properties, and f and r are
the mean rating and frequency in the dataset.

particular user, and not intended to be used as an absolute
time information for any computation across multiple users.

Larger values of α in Equation 2, close to 1, results in fast
forgetting a user’s shown interest in an object, and provides
an ephemeral assessment of user preferences. Small values,
on the other hand, will result in a smooth average, hence will
provide persistent user preferences. The choice of smoothing
factor is a matter of strategy, rather than that of necessity.
Indeed, it is possible, and perhaps advisable, to maintain
both types of user preferences, and producing recommenda-
tions as a mix of the results or applying a recommendation
algorithm to each.

An interesting question concerning Equation 2 is what to
use as the seed value of user interests, i.e. p(u, o, 0)? This
is once again a matter of recommendation strategy. While
a zero value seems to be the sensible choice for computing
ephemeral preferences, a unit value for persistent preferences
may well serve incremental refinement of user preferences
discovery; i.e. it initially assumes that the user is interested
in all objects equally, rather than being interested in none.

2.3 Combining Item Similarity with User Pref-
erences in Recommendation

With the definitions so far, we can proceed for assessment
of the utility score of an item, j, for a user, u, at time t,
given that user is currently viewing an item it. In order to
incorporate temporal user preferences (whether ephemeral
or persistent) we must modify the definition in in Equation
1 as follows:

u(it, j, u, t) = c · rj
x

0@ X
o∈(Ait

∩Aj)

p(u, o, t)

fo
y

1A + d · ε (3)

Intuitively, the equation above assigns non-zero scores to
all items that have at least one common attribute with the
item currently viewed by the user. In doing so, it assigns
higher scores to more popular items, to those that are linked
through rare attributes, and in the mean time using a mul-
tiplier for each attribute that reflects the user’s past interest
in the attribute. In this score calculation, the smoothing
factor used for maintaining user interest (the constant α in
Equation 2) determines how ephemeral or persistent is the
temporal context used in this scoring. Furthermore the fi-
nal term is used to introduce randomness in exploration of
the regions of the item-to-item graph that are around the
current item. The combined choice of constants c and d de-
termine the balance of consistency and exploratory elements
in scoring, whereas the combined choice of constants x and
y determine the relative impacts of item popularity (collab-
orative rating) and attribute rarity (information value).

With this definition in hand, a single best recommenda-
tion for the user u at time t, r(u, t), can be obtained by
choosing the item which has the maximum score:

r(u, t) = max
j∈I

u(it, j, u, t)

On the other hand, most recommender systems are expected
to select multiple recommendations. A trivial option in this
case would be to choose elements with largest scores; e.g.
if n recommendations are requested, such a set, R(u, t, n),
could be selected as:

R(u, t, n) = max
j∈I

nu(it, j, u, t)

However, a more pragmatic option, in our view, would be to
combine results of various scorings where some of these scor-
ings use ephemeral user context while others use persistent
user context, some introduce exploration while others stick
to consistency, etc. Assuming that n recommendations are
requested and there are m available utility scorings, labeled
as Su = u1, u2, . . . , um, the set R(u, t, n) can be constructed
as:

R(u, t, n) =
[

uk∈Su

max
j∈I

n/muk(it, j, u, t) (4)

There is an apparent problem in this method when n is
not divisible by m, and the problem gets worse when the
variety of scorings, m, becomes larger. We do not address
this problem here, instead we note that it is possible to make
posterior assessment of different scorings on a per user basis,
and assign different relevance values to each scoring so that
the set of recommendations are constructed as a non-uniform
combination with respect to these relevance values instead of
the simply put uniform combination of maxima in Equation
4. Nevertheless, the method of combination largely depends
on the content of the system and usage patterns, hence it is
a strategic matter as well as being a technical one.

The graph based representation in CaKuTa is also suitable
for suggesting recommendation algorithms that use a search
in the graph, rather than considering direct links from the
source item as we have done throughout our articulation
so far. We do not offer a treatment of such methods here,
however, since combining edge weights in indirect paths in
the item-to-item graph presents interpretation problems and
requires a different methodology.

3. STRENGTHS AND LIMITATIONS
While early studies in recommender systems focused on

consistency of recommendations with the user preferences
[2, 3], recently the emphasis is on the need for making rec-
ommender systems think out of the box and provide novel,
rather than over-specialized, recommendations[1], hence bal-
ancing accuracy with diversity of recommendations [8]. This
is in fact a return to the original vision of the field that unlike
search engines, recommender systems should help users dis-
cover new items [4, 6]. Incorporation of information value by
using frequency of item properties in our method provides a
way to introduce novelty in recommendations. Furthermore,
our parametric formulation and introduction of a random
term allows one to tune the accuracy-diversity balance of
the recommender system.

On the other hand, explicit treatment of ephemeral and
persistent user interests is rarely addressed in recommender
systems. Our parametric formulation of user interests allow
one to tune the recommendation method to use either type
of temporal user contexts, or combine them as desired. For
the sake of wider applicability, we have preferred to formu-
late user interest maintenance as based on counting purpose-
ful browsing of items rather than explicit ratings; however,
the latter can easily be incorporated into CaKuTa recom-
mender.

An important advantage of the similarity formulation in
CaKuTa is that it does not require a standard set of at-
tributes to assess item similarity. While this makes treat-
ment of novelty in recommendations difficult, for example
as opposed to the work of Abbassi et al [1], it renders our
system to be suitable for deployment in a wider range of

systems, including those that contain more than one type
of item such as a mix of music, books, films, etc. Graph
based representation of both item similarity and user pref-
erences is amenable to application on heterogeneous item
collections that are otherwise resistant to item or profile
similarity assessment methods (e.g. clustering or Euclidean
distance based similarity metrics) which require availability
of standard attribute sets. Furthermore, this flexibility is ac-
companied by the fact that CaKuTa can present the reasons
for its recommendations to users easily, due to incorporation
of item-to-property relation labels.

Since implementation of CaKuTa recommender is yet in-
complete, we have not conducted extensive experiments.
Furthermore, our articulation of the recommender algorithm
is short of suggesting rigorous methods for choosing param-
eters that effect how it behaves. Different systems require
different features depending on the properties of their data
sets [5]. Hence different experiment sets needs to be designed
to provide a tuning method for applying CaKuTa recom-
mender. On the other hand our preliminary performance
tests indicate that the recommender method have reason-
able computational performance for medium scale book and
music collections.

4. REFERENCES
[1] Z. Abbassi, S. A. Yahia, L. V. S. Lakshmanan,

S. Vassilvitskii, and C. Yu. Getting recommender
systems to think outside the box. In RecSys ’09:
Proceedings of the third ACM conference on
Recommender systems, pages 285–288, New York, NY,
USA, 2009. ACM.

[2] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on,
17(6):734–749, 2005.

[3] A. Ansari, S. Essegaier, and R. Kohli. Internet
recommendation systems. Journal of Marketing
Research, 37(3):363–375, August 2000.

[4] R. Burke. Hybrid recommender systems: Survey and
experiments. pages 331–370, November 2002.

[5] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst., 22(1):5–53, January
2004.

[6] J. B. Schafer, J. Konstan, and J. Riedi. Recommender
systems in e-commerce. In EC ’99: Proceedings of the
1st ACM conference on Electronic commerce, pages
158–166, New York, NY, USA, 1999. ACM.

[7] E. Sevinç, R. E. Başar, and B. Puhaloğlu. Common lisp
for a common cultural recommendation system.
International Lisp Conference, 2009.

[8] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R.
Wakeling, and Y.-C. Zhang. Solving the apparent
diversity-accuracy dilemma of recommender systems.
Proceedings of the National Academy of Sciences,
107(10):4511–4515, March 2010.

